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Abstract: The temporal-spatial dispersion analysis for the linear finite element method with implicit time
integration is presented. The Newmark method with β = 1/2 and γ = 1/4 is used as well as the consistent
mass matrix. The temporal-spatial dispersion relationships are derived in the closed form and analyzed due to
errors in numerical wave speed of propagation of harmonic wave. Based on this temporal-spatial dispersion
analysis, a suitable mesh size and time step size for allowed errors in phase speed are mentioned as well as we
present the polar dispersion graphs.
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1. Introduction

In numerical modelling of wave propagation by the finite element method ((Hughes, 2000)), both the spatial
and temporal discretization introduce dispersion errors. In general, the finite element solution is polluted by
dispersion errors as an effect of spatial finite element discretization and by the period elongation errors and
numerical damping of the direct time integration, see (Schreyer, 1983; Mullen and Belytschko, 1982). The
dispersion errors in finite element modelling are caused by the difference of numerical wave speeds from
the wave speeds in continuum and are dependent on the frequency of the propagation wave, its orientation in
the finite element grid, mesh size, time step size, element type, a choice of mass matrix and other numerical
parameters of the method.

In this paper, these dispersion errors are studied on the example of the plane strain linear (4-noded) finite
elements, see (Kolman et al, 2013, 2016). We extend the dispersion study into analysis of the finite element
method in implicit time integration based on the Newmark method, see (Newmark, 1959). Moreover, we
recommend a choice of numerical parameters as a mesh size and a time step size for finite element modelling
with implicit time integration of elastic wave propagation in solids.

The most widely used group of one-time step methods for implicit direct time integration is the Newmark
family, where the approximation of the displacement and velocity vector are controlled by two parameters
β and γ, for detail see (Newmark, 1959). If γ < 1/2 and γ > 1/2 a negative and positive damping is
introduced by the algorithm, respectively. For this reason, the further analysis is restricted only to γ = 1/2.
Then this general group includes several well-known cases, such as the average acceleration method with
β = 1/4 , the linear acceleration method with β = 1/6 and the Fox-Goodwin method with β = 1/12. The
explicit central difference method can be incorporated with β = 0. For more details, see (Hughes, 2000).
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Fig. 1: Two-dimensional infinite bilinear regular finite element mesh and plane wave inclined by angle θ.

2. Temporal-spatial dispersion analysis

There are several methods available to compute the dispersive behavior and all of them are based on the
analysis of the harmonic wave propagated in periodic space and discrete time and all of the use the Fourier
method. The solution is then in form of Bloch-plane wave.

The nodal displacements at the time t = sΔt of a plane wave problem, see Fig. 1(a), corresponding to the
wave solution in discrete form, are prescribed in the form

uhm,n = U0m,ne
i(khxmpx+khympy−ωsΔt)

vhm,n = V0m,ne
i(khxmpx+khympy−ωsΔt)

(1)

where uhm,n and vhm,n are the displacements in x and y direction in nodes (m,n) with the coordinates xm
and ym, see Fig. 1(b), U0m,n and V0m,n are unknown amplitudes, ω marks the angular velocity, Δt is the
time step size, kh is the numerical wave number and px and py are components of the unit normal vector
expressed as px = cos θ and py = sin θ, where angle θ defines the direction of wave propagation through
the mesh. After these wave motion is applied on the equation of discretized system and grid dispersion
behavior can be obtained, see (Kolman et al, 2013).

Using the relations for the displacement, velocity and the acceleration approximations of the Newmark
method in the matrix form of equation of motion, we obtain the final system of equation for the periodic
part of the problem. Then the dispersion relation can be obtained from the eigenfrequency analysis of that
system. The angular velocities ωi of the propagated waves expressed in terms of β for γ = 1/2 are

ωi =
2

Δt
arcsin

√
ΛiEΔt2

4βΛiEΔt2 + 4H2ρ
, i = 1, 2, ..., Nc (2)

where E is the Young modulus, ρ is the density of the material and H is the size of the element. The
eigenvalues Λi are obtained from the generalized eigenvalue problem of one periodic cell containing one
corner node for bilinear element, see (Kolman et al, 2013).

This dispersion relation can be transformed in dimensionless form by setting ω̄i = ωiH/c1 for dimension-
less angular velocity (c1 is the velocity of the longitudinal wave propagating in isotropic elastic domain,
c1 =

√
(Λ + 2G)/ρ), Λ and G are Lamé’s coefficients, by denoting the Courant number C = Δtc1/H and

denoting c0 =
√

E/ρ

ω̄i =
2

C
arcsin

√
ΛiC2c20

4βΛiC2c20 + 4c21
, i = 1, 2, ..., Nc (3)
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Fig. 2: Dispersion curves plotted over the first Brillouin zone of a linear 4-noded plain strain element for
several Courant numbers (representing a non-dimensional time step).

Such relation serves for setting the time step size and mesh size for required accuracy in finite element
modelling of elastic wave propagation due to dispersion. Nc is the number of dispersion branches.

Results for the linear elements, the average acceleration methods with β = 1/2 and γ = 1/4 and the
consistent mass matrix are shown in Fig. 2 and 3 for different values of the Courant number C. The
dispersion curves in Fig. 2 show that the angular velocities of the propagating wave through the periodic
finite element structure are limited and sensitive on the value of the time step size.

The suitable mesh size, measured by finite element edge H , of the linear plain strain finite element was
established in (Kolman et al, 2013). Expecting the spatial dispersion errors approximately 2%, the size
of a linear elements with respect to the minimum wave length of the propagated wave λ is approximately
H/λ = 1/10. Based on the dispersion graphs presenting in this paper, setting of the time step size Δt for
linear elements measured by the Courant number is recommended as C = 0.5.

3. Conclusions

In this paper, we have presented the temporal-spatial dispersion analysis of the finite element method with
bilinear shape functions. The analysis has been performed for the plane problem, the consistent mass matrix
and the implicit time integration based on the Newmark method with β = 1/2 and γ = 1/4. Based on this
study, we are able to recommend the setting of the mesh size defined as the element edge H ≤ 10λ, where
λ is the wavelength of propagating wave through the finite element mesh. The time step is recommended to
choice as Δt = 0.5H/c1, where c1 is the speed of longitudinal wave. We tested this output of the dispersion
analysis by several numerical tests. In the future, we plan to extent the analysis for other modern implicit
time integrators as the generalized-α method or the Bathe method.
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Fig. 3: Polar diagrams for two-dimensional infinite bilinear 4-noded regular finite element mesh for H/λ =
1/10 (on the left) and H/λ = 1/3 (on the right).
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